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Origin and hydrothermal alteration of rare-metal
granites in the Al-Hamra area, northeastern
Arabian Shield, Saudi Arabia

Talal M. Qadhi
Depmartonnf of Minerel Resonrees aind Rocks,
Faruify of Earth Scievces, King Abduigziz Lnfversaty, Jeddsh

Thie Jabsal Hamra (538 Ma) and Jabal Abu ad Dud plutens in northesst Saudi Arabia are epizonal
baodies consisting of alkali feldspar granite and alkali feldspar syenite. Fracture-controlled zones of
highly altered granites are recorded along the margins of the plutens, The granites intrude
metamorphosed volcano-sedimentary sucoessions of the Matran Formation, The rocks of the two
plutons are chemically indistinguishable. They are characlerized by above-average Th, N, Y Ta, HF
and Zr, very kow Ca0d, Ticy,, MgO, FeO and Mn0, and by high contents of rare earth elemwnis (REE).
Tectonic discrimination diagrams suggest an intra-plate environment, with many geochemical and
mineralogical fealures resembling post-orogenic A-type granstes. Numerous local and regicnal
gealogic constraints indicate that the plutons were intruded in an extension-related seiting lollowing
the cessation of Neoprotesazoic arc-relabed magmatism. Geochemical data are consistent with their
derivation by partial melting of depleted crust followed by fractional crystallization of feldspars,
ferromagnesian minerals and REE-rich accessory phases. The radiogenic isotope data [eNd (T) values
are +3.5 to +4.2] indicate that the granite magma was generated from a Juvenile' source, which is
typical of the rocks making up most of the Arabian-Mubian Shield. Rare-metal mineralization is
associated with the frcture-controlled alteralion zones that ocewr at Jabal Al Flamra and Fabal Abu ad
Dud, The altered rocks are characterized by higher TiCL, FeyOy, S0y and lower ALG,, Cald, Nay O,
than the unaltered rocks, They show high and wide range in the total REE contents (804-1557 ppm),
Ta (6-194 ppm), Nb (513483 ppm), Hf (13-368 ppm), Zr (394-14887 ppmy), Th (16-572 ppm) and U
(4143 ppm). Feld observations and Further petrographic and chemical studies suggest that the
altered rocks and the rane metal enrichment are the products of hydrothermal-metasomatic alteration
of the quarte alkali feldspar syenite and the alkali feldspar granite. The rare-metal enrichment was
explained by orthomagmatic (uid transport of these elements as fluonde compleses, and their
subseguent deposition as a resull of mixing with externally derived Fe-rich fluikls.
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Introvnction

The Arabian Shield is the exposed Precambrian basement region of the Arabian
Peninsula of Saudi Arabia, Yemen and Oman, with the bulk of the exposied
Precambrian lying within western Saudi Arabia. It is part of the Arabian-Mubian
Shield (ANS) that also includes northeastern Africa, Sinai and Jordan. The ANS
comprises a vast expanse of Neoproterozoic juvenile oceanic island are crust,
flanked on the west and east by older cratonic crust. The ANS, which represents
one of the largest tracts of juvenile crust on Earth, occupies the northern part of
the East African Orogen (EAO) of Stern (1994, 2002), a major Meoproterozoic
orogen that resulted from the collision of the East and West Gondwana
continents to form the Gondwana super-continent near the end of the Nex
proterozoic,

Among all geologic environments, alkaline igneous seitings are the most
enriched in HFSE and are commonly potential repositories of deposits of these
metals, Economic or potentially economic HFSE concentrations hosted in alka-
line igneous rocks have been interpreted either due to fractional crystallization or
hydrothermal alteration (Schwartz 1992). The Arabian Shield contains one of the
largest fields of alkali granites in the world. It constitutes about 2.3% of the
plutonic rock assemblage in the Arabian Shield (Stoeser 1986), They form, along
with the some aluminous granite, one of the economically important groups of
granites in the shield and are associated with Nb, Ts, Th, U, Sn, W, E Mo, Zr, ¥ and
REE mineralization (Drysdall et al. 1984; Ramsay et al. 1986; Jackson 1986; Qadhi
1990). Forty-nine major and more than a dozen minor alkaline and peralkaline
granite plutons are concentrated in the Midyan and Hijaz terrains and in the
Nabitah orogenic belt. Very few alkali granite plutons are defined in the southern
part of the shield. In general, alkali granite is the last major intrusive phase
wherever it occurs. Available radiometric data show that the alkali granite was
emplaced during a time span of about 180 Ma (686-518 Ma); all but four occur-
rences formed between 630-565 Ma. A major part of the alkaline/peralkaline
granites have chemical specialization characters (Tischendorf 1977; Dy Bray 1986;
Ramsay 1986) and some show marked enrichment in Nb, Ta, Th, U, Zr Y and
REE.

The Hamra area (Fig, 1), in northeastern Saudi Arabia, contains two rare-metal-
bearing granite plutoms (Jabal Al Hamea and Jabal Abu ad Dud), which were
affected by hydrothermal alteration. The plutons are made up of alkali-feldspar
syenite and alkali-feldspar granite. In this paper we present geologic, miner-
alogical, chemical and radiogenic isotope data, to constrain the likely processes
responsible for the origin of the granite and the associated mineralization.

Field geology and petrography

The Jabal Al Hamra area is located between lat. 26° and 27° N and long. 37" 30
and 3% 00 E. The geologic map (Fig. 2) shows that the intrusive plutonic rocks
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Fig. 1

Location of Al Hamra
area (black point),
Arablan Shiekd. Saudi
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include Jabal Al Hamra, Jabal Abu ad Dud and Jabal Sinn, which were intruded
into a metamorphosed volcano-sedimentary succession of the Matran Forma-
tion. These infrusive rocks are unconformably overlain by vounger volcanic and
sedimentary rocks of the Rublayn Formation of the Jibalah Group (Hadley 1975).
The rocks of Sahl al Matran evolved in a late Neoproterozoic island arc (Schmidl
et al. 1979; Greenwood et al. 197%; Fleck et al. 1980), approximately between $Hi
and 600 Ma ago. This period was followed by a late Neoproterozoic pust-collision
event (Najd Orogeny) during which the Najd fault system was established, the
Jibalah Croup was deposited and deformed and the intrusive alkaline rocks were
intruded (Schmidt et al. 1979; Fleck et al. 1980; Kemp et al. 1980).
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Jabal Al Hamra

The Jabal Al Hamra is a 5 by 1.3 km N-trending ridge (Fig. 2) rising approxi-
malely 250 m above wadi level. Marginal tectonic brecciation and pervasive
cataclasis are recorded, particularly at the western side of the granite mass,
indicating a forceful mode of emplacement (Drysdall et al. 1954). The rocks of the
Hamra pluton are massive, homogeneous and fine- to medium-grained. Some
parts of the pluton show a variable depree of deformation and hydrothermal
alteration that are more common and intense in the southern part of the pluton,
The pluton consists of reddish quartz alkali-feldspar syenite, whereas coarse-
grained alkali-feldspar granite predominates in the northern part of the pluton.
Xenoliths of the country rock (Matran Formation) are recorded in the quartz
alkali-feldspar syenite. They are of blackish grey color, sub-rounded to irregular
and highly sheared,

The quartz alkali-feldspar syenite constitutes the major part of Jabal Hamra,
The rocks are equigranular, fine- to medium-grained, of pink to red color Some
samples show porphyritic texture, especially in the roof facies. The rocks consist
of alkali feldspar, quartz {constiluting up to % to 95% of the rock mode) and
minor amounts of fine albite laths, Mafic minerals are partially to completely
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replaced by iron oxides, quartz and calrite. Accessory minerals include zircon,
fluorite and allanite. Alkali-feldspar is represented by microcline and microcline-
perthite {about 75 to 85% of the rock mode). Some crystals of alkali feldspar are
invariably clouded and stained by pale reddish brown materials (a mixture of
irom oxides and clay minerals). They also exhibit clear colorless dentate albite rims
and veinlets. Quartz crystals show wide variation in size and abundance ({10 to
25% of the rock mode); there is therefore a local gradation from quartz alkali-
teldspar svenite to alkali-feldspar granite. The quartz crystals are medium-
grained with an anhedral granular form. Secondary quarlz of post-magmatic
origin occurs in very fine-grained micro- to cryplocrystalline aggregates, almost
forming veinlels.

The alkali-feldspar granite is petrographically and mineralogically similar to
the gquartz alkali-feldspar syenite, but the former is of limited distribution in Jabal
Hamra. Moreover, it differs by the high modal content of quartz that exceeds 207
of the rock mode. Silicification is pronounced in some samples. K-feldspar and
quartz are the main constituents of the rock with subordinate plagioclase
feldspar Secondary minerals are abundant in some samples and include gquartz,
calcite and iron oxides.

The altered alkali feldspar syenite represents a highly silicified, hematitized
and fracture-controlled wone (300 x 1 m) on the southern side of the Hamra
granite pluton. The rocks in this zone are very fine-grained to porphyritic and of
dark color, ranging from black and dark brown to deep reddish-brown, with
abundant opague minerals. High radivactivity (up lo 4000 cps; averape
background is 250 cps) is recorded in the altered granite zone. The altered zone
is in irregular and gradational contact against the adjacent quartz alkali-feldspar
svenite, Jackson and Douch (1986) recorded a sharp, brecciated and sheared
contact between the altered granite and the surrounding quartz alkali-feldspar
syenite. However, field observations and further petrographic and chemical
studics suggest that the altered granite is not magmatic rock but a type of hydro-
thermal alteration. The rocks of the altered zone are fine-grained, of yellowish-
brown Lo reddish-brown and dark black color Itis heterogeneous, with the main
phenocrysts being quartz, Cluster aggregates of recrystallized fine-grained
quartz form a glomeroporhyrtic-like texture, The medium-grained quartz crystals
{4 mm average diameter) are highly strained, corroded and embayed. The matrix
consists of very fine-grained, micro- to crypto-crystalline quartz admixed with
vellowish-brown to deep brown hematite, hydrated iron oxides, fluorite, zircon,
sericite and calcite. Relicts of fine-grained, highly altered alkali-feldspar are also
found in the matrix.

fibeal Abu ad Dud

The Jabal Abu ad Dud (Fg 2) forms a north-trending, elongated pluton of
pink, reddish to brick red alkali feldspar granite. The rocks are massive to lucally
foliated, homogenous and medium- to coarse-grained. They show variable
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degrees of shearing and deformation, However, the deformation features are
prominent in the northern part of the pluton, while the southern part is less
deformed. A field radiometric survey over the Abu ad Dud granile mass,
particularly in the northern part of the pluton, reveals local high radioactivity
with up to 2500 cps. Alteration zones and patches of silica-hematite-rich granite
are recorded in Jabal Abu ad Dud.

The alkali feldspar granite constitutes the main part of Jabal Abu ad Dud
pluton, although miner porphyritic microgranite is also recorded. The rocks are
coarse-grained, hypersolvous and equigranular of hypidiomorphic texture, Local
deformation and shearing are prominent. The rocks consist of K-feldspar and
quartz. The mafic minerals are almost altered to iron oxides that impart the
reddish-brown coloration to the rock. K-feldspar (orthoclase) crystals are mostly
flame perthites and mesoperthites forming 60 to 80% of the rock mode, The
crystals are coarse-grained and subhedral to anhedral. Some crystals are highly
clouded and turbid due to alteration, and often with a clear albite rim, Quartz
shows noticeable variation in abundance, ranging from 10% to 30% of the rock
mode. Two types of quartz crystals are identified in the rock. The first type is
coarse- o medium-grained, anhedral, of granular form and with corroded Erain
boundaries. Some quartz crystals contain poikilitic indusions of perthites; most
of them are highly strained as manifested by severe undulose extinction. The
second type occurs as very fine-grained to cryptocrystalline agpregates, They are
anhedral, undeformed and commonly admixed with iron oxides. Accessory
minerals include zircon, thorite, rutile and monazite,

The altered rocks in the Abu ad Dud pluton are mineralogically and chemically
very similar to those observed at Jabal Hamra,

Analytical technigues

Hased on the petrographic investigations, 31 representative samples covering
the different granite varieties were selected for major and trace element analyses.
Major element compositions and 5S¢, Ba and Ni abundances were determined by
inductively coupled plasma-atomic emission spectrometry  (ICP-AES). The
remainder of trace elements and the rare earth elements (REF} were determined
by inductively coupled plasma-mass spectrometry (ICP-MS). All the analyses
were carried oul at the ACME analvtical laboratories Lid., Canada. Analytical
precision, as caloulated from replicate analyses, is 0L5% for major elements and
varies from 2-20% for trace elements. The major and trace element data of the
Jabal Hamra and Jabal Abu ad Dud are given in Table 1. lsotopic ratios of Sr and
Nd, and the concentrations of Rb, Sr, Sm and Nd, were determined by isotopic
dilution analysis. The analyses were undertaken at the Geology Department,
Bergen University (Morway), u:*-ingi a VG 354 and Finnigan MAT 262 mass
spectrometer. The ¥Sr®65r and the M3NdA*Nd ratios were normalized within
runs to ¥Se®8r = 01194 and toMSNG/MNG = 0.7219. Laboratory values for
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standards at the time of running the samples were: Johanson and Matthey (JM)
Nd;O;, batch no. S819093A yielded #Nd/MNG = 0511101 = 15 (2 5); NBS 987
vieldod ¥78r®Sr = 071015 = 0.00004 (20, mean). The decay constant used for
1475 s 6,54 x 10-12 y! and for Rb is 142 x 10717 y! (Steiger and Jager 1977).
Model Nd ages (Ty) were calculated according to the depleted mantle model of
Delaolo (1981).

Chemical varfations fn the granites

The studied rocks are classified using the R1-R2 diagram (Fig. 3a) of De La
Roche et al. (1980) and of Batchelor and Bowden (1985). All the investigated
samples plot in the field of alkali granites and follow the alkaline trend, Most of
the unaltered rocks of Jabal Hamra and Jabal Abu ad Dhad are melaluminous o
peralkaline (Fig. 3b), except two samples (H-11 and H-16), which are peralumi-
nous. The Jabal Hamra and Jabal Abu ad Dud granites show a wide variation and
enrichment in term of most
major and trace elements (510, | -xln:i Fra e
= 387749 wit%; ALO; = =, |1 Facuisem - (a)
95-15.5 wtih; Ba = 95-624 ppm; 4+ e
Zr = 200-6000 ppm; Nb = &

30-1000 ppm; Th = 3-100 ppm).
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Fig. 4
Harker variation diagrams of some major of the Jabal Al Hamra, Jabal Abu ad Dod and Fabal Sinn
unaltered granites. Symbaols as in Fig. 3

teldspar gramite of Jabal Abu ad Dud are characterized by higher contents in
Ti0,, Fe,O,, Si0,, Ta, Nb, HE Zr Th and U and lower in Al,O5, Ca0, Na,yO, than
the unaltered rocks (Table 1 and Figs 4 and 5).

The variation of trace elements is well demonstrated on primordial mantle-
normalized diagrams using the normalizing mantle values of Sun (1982). All the
investigated rocks [rom the Jabal Hamra and Jabal Abu ad Dud show similar
variation patterns and element enrichment and depletion (Fig. 6). This may
indicate that they evolved from the same source and/or comparable fractionation
history. Well-defined negative anomalies are observed tor St Ba, K and Ti among
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all the rocks that are attributed to the fractionation of plagioclase (5r), K-feldspar
(K, Ba) and Fe-Ti oxides (Ti). The syenogranite of Jabal Sinn shows enrichment in
large-ion lithophile elements (LILE) and distinctive depletion in Nb (Fig, ),
which is a characteristic feature of arc granitoids.

Rare carth clements of the studied rocks from Jabal Hamira and Abu ad Dud are
manifested in chondrite-normalized diagrams (Fig. 7). The alkali feldspar syenite
of Jabal Hamra and the alkali feldspar granite of Jabal Abu ad Dud show very
similar REE patterns. They show slight differences in the intensity of the Eu
anomalies and total REE. The quartz alkali feldspar syenite samples are char-
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Fig, &
Pramiative mantle-normalized multi-element diagrams for the investigated granibes, Normalizing

values are from Sun and McDonowgh {15989

acterized by a smooth negative slope with LREE enrichment (Lan = 39-204),
fractionated patterns (La'ybn = 4-6; La/Smn = 2.3-3.2) and maderate Lo strong
negative Eu anomalies {{EwEu* = 0.22-0.84)}. Compared to the rocks of Jabal
Hamra (Table 13, the Abu ad Dud alkali feldspar granite shows regular frac-
tionated patterns, similar to the Jabal Hamra rocks (La'Ybn = 4.6-8; LaSmn =
2.7-35) but with moderate negative Fu-anomalies {(Fuw/Eu* = 0.36-1)} and
higher total REE (EREE = 325-3072 ppm). The close similarity of REE patterns of
the Jabal Hamra and Jabal Abu ad Dud rocks, and the variation in Eu anomalies
and total REE, indicate that all the rocks are presumably developed from the
same magma source, but the Hamra granites show a more fractionated nature.
The syenogranite of Jabal Sinn shows fractionated REE patterns (La/Ybn = 6.2
and La'Smn = 1.1) and negative Hu anomalies {(EwEu* = 0.46)} similar to the
Hamea and Abu ad Dud rocks, but with lower total REE (average IREE = 232
ppm).

The hydrothermally altered granites show high and wide ranges in REE
enrichment (La,, 208 ap to 1HLO00; and Yb, = 13 to 142) and have more fraction-
ated REE patterns than their host or parent rock (guartz alkali feldspar syenite),
but with similar negative Eu anomalies {La/Ybn = 47-254, (EwEu* = 0.36-
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Fig. 7
Chondrite-normalized REE patterns of the ivwvestigited granites, Normalizing value are from Sun
(1942)

0.44)). The most striking features of this type of hydrothermal alteration is the
anomalous enrichment in the total REE (EREE = 84-15579 ppm).

Granite fype and tectonic setting

Ihe type and tectonic setting of the investigated granites are determined
mainly for the unaltered granites. The granites of Jabal Hamra and Abu ad Dud
are all hypersolvous and metaluminous to marginally peralkaline. They have a
pronounced depletion in Ca0, MgO, 5t Ba, and a marked enrichment in
FeO* /Mg, Ga/Al, RbySe, HFSE (Zr Y, Nb, Ta, HI Zn) and REE. These chemical
aspects closely resemble the A-type granites of both orogenic- and anorogenic
silicic magmatism in the sense of many workers (Whalen et al. 1987; Chappell et
al. 1987: Eby 1990, 1992; Whalen et al. 1996). The binary scatter diagrams Y versus
MNb (Pearce et al. 1984) and (Zr+Nb+Y+Ce) versus FeO* Mg (Whalen et al.
1987) are commonly used to discriminate the A-type granites from the other
types (I- and S-type granites). All the investigated granites fall entirely in the A-
type granitic fields (Fig. 8a, b). Eby (1990-1992) used the abundance of Ce, ¥ and
“b to differentiate between orogenic {A,-subtype) and anorogenic granites (Ay-
subtype) associated with rift zone. On the Nb-Ce-Y diagram (Fig. 8c) the Hamzta
and Abu ad Dud alkali feldspar granite and alkali feldspar syenite samples cluster
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around the dividing line and
plot in both Aj-subtype and
As-subtype, but most of the
samples lie in the post-
collision As-subtype granite
field.

Srand Nd isotopes

The Jabal Hamra quartzs
alkali feldspar syenite has
been dated in this study by
the whole-rock Bb-5r method.
The analytical results are
given in Table (2) and plotted
in Fig. 9. Five samples of the
Jabal Hamra quarte alkali
feldspar syenite were selected
to obtain a wide spread in
Rb/Sr ratios; the analytical
points define a moderale
straight-line fit on a 8761/865r
versus " Rb/®®Sr  isochron
diagram (Fig. ¥). The "isochron
age" calculated from the five
anmalytical points 15 538 = 15
Ma with an initial "Sr/505r
rativ of 07068 = (0.001 (2a)
The observed scatter of points
about the “errorchron” ex-
ceeds  the analytical un-
certainty (MSWD = 19) and
could be due to a lale open
system behavior induced by
post-magmatic  alteration.
Although the rocks of the
Hamra pluton are locally
affected by variable hydro-
thermal  alteration,  the
samples selecled for isutopic
measurements  show  the
minimal effect of this type of
alteration. Nevertheless,
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Tectonic discrimination disgrams for the investigated
granites, &) Y vi. Nb diagram (Dearce et al, 1954}, VAG -
valeanic are gramite, syn-COLG - syn-collision granibe,
ORG - ocean ridge granite, WPG - within plate granite; b)
{FelP Mg ws. Zr+Nb+Ce+Y discrimination diagram
(Whalen et al. 1957); ) ¥-Nb-Ce ternary diagram (Eb 1993)
Al and A2 are the Aelds of anorogenic and post-onogenic
pramites, respectively. Symbbols as in Fig. 3
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incipient alteration of feldspar and bictite cannot be completely excluded. The
age (338 Ma) and the moderate initial ¥Sr®Sr ratio (0.7068) are in pood
agreement with ather ages (390-510 Ma) and moderately high initial 8750/865r
ratios (0.705-0.714) reported for many alkaline/peralkaline types of granite from
the Arabian Shicld (Duyverman et al. 1982; Calver and Kemp 1982; Calvez et al
1943; Qadhi 2003). The moderately high initial 876868 ratio of the labal Hamra
rocks indicates that other sources {e.g. crustal materials or b ydrothermal fluids)
may be involved in their evolution.

Neodiumum isotopic compuositions were determined for four petrographically
selected samples from the Hamra platon {quarts alkali feldspar syenite) and one
sample (# H-200) of syenogranite from Jabal Sinn. The data and some caleulated
parameters, including Nd-model ages (TDM) and eNd values, are presented in
lable 2. The Hamra rocks are characterized by positive eNd values (+3.52 -
+4.23), which are comparable to the REE-bearing A-type granites in the Arabian
Shield. The similar eNd values and the close chemical similarity {e.. LILE and
HFS elements) between Jabal Hamra and Jabal Sinn indicate that they are
genetically-related and both were derived from, at least, a chemically and
isotopically similar magma source. The wholly positive values of the eNd indicate
a source region which has a high Sm/Nd ralic; such a source is normally inter-
prefed as a mantle or a juvenile crustal source (eg Faure 1986). The isotopic
compusition shows that the Hamra syenite and Jabal Sinn syenogranite have
positive eNd and eSr values and thus a "mantle” Nd isotopic signature and a
“erustal” Sr isotopic signature. However, the ¢eNd values of the Hamra syenite and
Jabal Sinn syenogranite lie within the eNd range (+ 2.7 to 5.1) reported for
Arabian Shield continental crust (Duyverman et al, 1982; Stacey and Hedge 1984;
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Table 2

Kl-Sr and Sen-Md data for Al Hamra granites
"‘”'N':“ URB™Sr  USiSrisde)  gmithgg _m;'_iz:;‘” . B Tliih)
H-2 10 BTN+ 7 0.1 03126291 & 49 42% LGE
H-ll 1362 OHIIRIL L B 130 Q512596 = 6 51 152 0.74
H-17 1B OR41%6 - @ URE] BLII2653 4 6 i3 4,29 LGk
H-1§ 1672 0EM7I0= 10 17
H 20 2.60 Q726371 = 9 LN L 512588 + 4 £ 4.1 0.6

The 2o mandard error in *'Rb™8r und 'P5m Y s 1% Anabytical uncenaintics in "Sp" 5y
used o widgh the regression and caloulate the MSWD are 0.2%

Hegner and Pallister 1989; McGuire and Stern 1993; Frost et al. 2001 % The
calculated Nd-depleted mantle model ages (TDM) for the investigated Hamra
syenite and [abal Sinn syenogranite range from 067 to 0.74 Ca (.70 Ga on
average) and are higher than the calculated crystallization age. This may imply
that the mantle source of the studied rocks is less depleted than that of the
depleted mantle from which the Nd model ages were calculated.

Discussion
Petrogenesis of the A-type granites

Io explain the origin of A-type granites, a number of petrogenetic models have
been proposed in which crustal, mantle-derived or mixed sources were
suggested. Numerous Sm-Nd and Rb-Sr isotope data obtained during the last
decade suggest that many silicic magmas of this type were produced from
sources in which mantle-derived material was dominant (e, Tarner ot al. 1992;
Whalen et al. 1996; Jahn et al. 2000; Bonin 2004; Jahn et al. 2004). The isotope data
on the investigated granites support this conclusion. Positive eNd (T) values
ranging from +3.5 to +4.2 in the investigaled granites (Table 2} point to a
juvenile’ character and suggest that the silicic magma was derived either by
partial melting of juvenile crust or by differentiation of mantle-derived ma gma.
It fullows from data in Table 2 that the crystallization age (538 Ma) and Nd model
age TDM (670-740 Ma) differ significantly. Since TDM corresponds to the time
when the source of granite magma has been isolated from the mantle source (De
Paolo et al. 1991) the observed difference suggests later thermal reworking of the
mantle source material and possibly admixture of crustal com ponent. This means
that the eNd (T) values calculated for granites cannot he interpreted straight-
forwardly as an indication of mildly depleted mantle source of granite (Arndt
and Goldstein 1987). However, these values attest that the granites from the
Hanwra area contain more than 50% mantle {or young juvenile erust) component,
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Similar models were suggested for other A-type granites of the Arabian-Nubian
Shield (Beyth et al. 1994; Moghazi 1999; Kateir et al. 2006). The high initial Sr ratio
(0.7068) may be attributed to addition of S¢ from hydrothermal fluids,

Fractional crystallization, generally of a mantle-derived magma, to produce A-
type granites or peralkaline compositions has been proposed by many workers
(e.g. Turner et al. 1992). One argument against a mechanism of fractional crystalli-
zation of a mafic magma to produce the A-type granites of the study area is that
some of the least evolved rocks have Eu, Rb, Sr and Ba contents that preclude
extensive feldspar fractionation from a mafic source. The composition of the
invesligated rocks [Ba up to 750 ppm; Bb, up to 340 ppm; and low to moderate
Eu, up to 4 ppm] indicates that there has been no appreciable feldspar frac-
ticnation. The most mafic members of the investigated granites (H-2 and H-14,
Table 1) have compositions that were probably not produced by fractionation
from a mafic source, but appear to be the result of partial melting. Magma mixing
15 a process that has been advanced by some workers to produce A-type graniles,
However, as many of the A-type granites of the studied area are peralkaline, very
little strongly metaluminous mafic magma could have been added to the granite
magma, especially considering that the mafic magmas have higher concentra-
tions of Al

Many workers have suggested that A-type granites are produced by combined
partial melting-fractionation from source regions of slightly different com-
pasition than those for I-type granites (e.g. Collins et al. 1982; Clemens et al. 1984,
Whalen et al. 1987; Creaser et al, 1991; Landenberger and Collins 1996). Proposed
source compesitions that have been favored are lower crust, including tonalite,
granadiorite, peraluminous granulite, charnockite and granulitic residuum from
melting of I-type granites. We favor a felsic mantle-derived crustal source that
could overlap in composition with l-type sources. The high temperatures
required to produce an extractable magma may have been initiated by mantle
upwelling or mafic magma influx into a localized area. The gencrated melt
evolved by fractional crystallization of feldspars, ferromagnesian minerals and
some accessory phases to produce the petrographic variation in the studied
Eranites.

Hydrothermal alteration and mineralization

Petragraphic study reveals that most of the Jabal Hamra and Jabal Abu ad Dud
rocks preserve little-modified magmatic relationships. The texture of both alkali
feldspar granite and alkali feldspar syenite is hypidiomorphic with subhedral to
euhedral grains of quartz, plagioclase, alkali feldspar and biotite, Alkali feldspar
is variably perthitic, and film perthite is more widely developed than flame and
bleb types. Rare grains of apparently uniform, unexsolved alkali feldspar are
observed. The igneous mica varies from dark red-brown to orangey brown and
encloses accessory phases, including apatite, zircon and monazite, However,
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many of the biotite crystals are altered to chlorite-iron oxide mixture. Several
studies showed that abundance of exsolution textures in alkali feldspar indicates
extensive structural rearrangement of magmatic alkali feldspar at low (=400 °C)
temperature (e.g Parsons 1978; Brown and Parsons 1989; Worden et al. 1990; Lee
et al, 1995; Walker et al. 1993). The turbidity in alkali feldspars points to recrystalli-
zation driven by infiltration of aqueous fluid. According to Parsons (1978), coarse
patch perthite in subsolvus feldspars developed isochemically by water-impelled
dissolution and reprecipitation. This suggests that in the course of recrystalli-
zation the system remained closed. Closed-system behavior is also supported by
the small scatter in Rb- 5r isochron constructed for the Hamra samples. Thus the
Rb-5r isotope system was not disturbed by sub-solidus interaction with fluids. It
follows that the main proportion of water that caused the feldspar recrystalli-
zation should come from the granite magma itself. The dominance of exsolution
and alteration textures of perthite grains from the alkali feldspar granites
sugzests that fluid phase was present for a long time after the emplacement and
crystallization of the plutons,

The dominant alteration process in the granitoid rocks hosting the rare-metal
mineralization was the replacement of perthitic orthoclase by kaoline and sericite
with a remarkable change in megascopic and microscopic appearance. With
increasing alteration turbidity extends throughout the grains, with concomitant
development of abundant iron oxides (hematite dust) along the grain bounda-
ries, In the most strongly metasomatized rocks, pitted textures become pervasive
within K feldspar grains. Moreover, Na-metasomatism is erratically distributed
and characteristically takes the form of replacive rims of white albite on the
marging of the alkali feldspar megacrysts, although groundmass plagioclase is
also albitized. From the standpoint of hydrothermal alteration the rare-metal-
bearing altered granite should be considered as a product of intense hydro-
thermal-metasomatic alteration of the alkali feldspar granite and alkali feldspar
syenite. This is defined by: 1) position in the field, where gradational contact
between the altered and non-altered granite is recorded, 2) different modal
composition, 3) chemical composition characterized by higher TiO,, Fe,Q,, 50,
and lower Al,Oy, Cald, Na,0, than for the unaltered rocks and 4) extraordinarily
high concentrativns of HFSE and REE.

Crrigin af rare-metal mineralization

High contents of HFSE in the alkali feldspar granite and alkali feldspar syenite
can be attributed to characteristics of the source region and to those of the
corresponding melts, which allow them to accommodate higher proportions of
these clements than other melts {Scarfe 1977). The elevated contents of alkalis
and fluorine in these magmas, as indicated by modal fluorite and high
Na,0+K,0 in these rocks, increase the solubility of HFSE by promoting
formation of polymeric alkali-silicate complexes and/or alkali-fluoride complexes
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wilh these metals (Walson 1579 Collerson 1982; Collins et al. 1982), The effects of
fluorine in granites is well known and it is suggested that the F-rich fluid could
produce HREE and HFSE enrichment in the late stages of evolution of granilic
melt due to F complexing (Dingwell 1988; Rogers and Satterfield 1994). The
addition of F into the melt promotes the formation of [SiOF|> complexes of
HREE and HFSE, resulting in depolymerization and reduction in the availability
of 5iC}, tetrahedra to form HREE- and HFSE-bearing phases (Dingwell 1988). The
development of F-bearing fluids and their interaction with the silicic melt at the
late magmatic stage enhance element fractionation, since the addition of fluorine
decreases silicate melt viscosity (Mysen and Virgo 1985) and expands the primary
phase field of gquartz (Manning 1981; Manning and Pichavant 1983), thus
extending the duration of crystallization. However, the altered granite bodies
contain extraordinarily high concentrations of HFSE that igneous processes alone
seem insufficient to account for A feature of plutons showing extreme en-
richment in these elements is an association of mineralization with hydrothermal
alteration (Trueman et al. 1988), which suggests that hydrothermal processes
played a role in HFSE concentration.

In a study of mass changes during alteration, Salvi and Williams-Jones (1996)
have been able to show quantitatively that appreciable quantities of Zr, ¥ and
heavy REE were concentrated hydrothermally. This enrichment was explained
by orthomagmatic fluid transport of these elements as fluoride complexes, and
their subsequent deposition as a result of mixing with an externally derived Ca.
and/or Fe-rich meteoric fluid. The Hamra and Abu ad Dud plutons present
alteration patterns very similar to those associated with the hydrothermal rare-
metal mineralization of Salvi and Williams- Jones (1996); it is therefore reasonable
o speculate that similar additions of Zr, ¥ and heavy REE occurred in this
complex. The hydrothermal solutions may have originated form the igneous
intrusions and have undergone mixing with other fluids rich in Fe, MnO, TiD,
and Zn. The Hamra area is therefore an ideal locality to test the hypothesis
formulated for rare-metal mineralization formed by hydrothermal fluids in the
Arabian Shield. Further fluid inclusion and stable isotope studies are required to
evaluate this process.

Conclusions

1. The Hamra granite plutons, emplaced in a Neoproterozoic island arc
assemblage in northeast Arabia, are an example of alkaline felsic magmatism that
hos rare-metal mineralization, The granites consist of three granitic types, alkali
feldspar granite, alkali feldspar syenite and altered granite. The alkali feldspar
granite and alkali feldspar syenite satisfy the mineralogical, geochemical {major
and trace elements) and tectonic requirements of post-collision A-type granite,

Z. The alkali-feldspar granite and syenite were generated mainly by fractional
crystallization of crustal-derived magma. Abundance of turbid alkali feldspars
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and altered biotite suggest that crystallization of alkali-feldspar granites was
followed by sub-solidus fluid-rock interaction. High eNd (T) values (+3.5 and
+4.2) indicate that the granite magma was generated from a 'juvenile’ source,
which is typical of the rocks making up most of the Arabian-Nubian shield.

3. Rare metal mineralizaton associated with fracture-controlled alleration
zones oecurs at Jabal Al Hamra and Jabal Abu ad Dud. The altered rocks are
characterized by higher TiO,, Fe,05, 5i0,, and lower ALQ;, Ca0, Na,O, than the
unaltered rocks. They show a high and wide range in the total REE contents
(804-15579 ppm), Ta (6-1%4 ppm}, Nb (31-3483 ppm), HF (13-368 ppm), Zr
(394-14887 ppm), Th (16-572 ppm) and U {4-143 ppm}.

4. Field observations and further petrographic and chemical studies suggest
that the altered rocks and the rare metal enrichment are the products of hydro-
thermal-metasomatic alteration of the quartz alkali feldspar syenite and the alkali
feldspar granite. The rare-metal enrichment is explained by orthomagmatic fluid
transport of these elements as fluoride complexes, and their subsequent de-
position as a result of mixing with an externally derived Fe-rich fluid.
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